Difference between revisions of "X3D V4 HTML Integration Requirements"

From Web3D.org
Jump to: navigation, search
Line 30: Line 30:
 
: TBD: Not all style attributes apply to X3D nodes & fields
 
: TBD: Not all style attributes apply to X3D nodes & fields
  
 +
=== HTML encodings ===
 +
: HTML5 has two encodings, not one. Each consistently maps to DOM. The WG developing corresponding functionality and syntax that supports both encodings will add tremendous value to everyone.
 +
:: HTML5 Recommendation section 8. The HTML syntax  https://www.w3.org/TR/html5/syntax.html#syntax
 +
:: HTML5 Recommendation section 9. The XHTML syntax https://www.w3.org/TR/html5/the-xhtml-syntax.html#the-xhtml-syntax
 +
: The differences between HTML and XHTML in the appearance of the elements and attributes is that XHTML is strict. This amounts to closing elements, elements and attributes are lower case, mandatory elements and attributes, different MIME type (text/html vs. application/xml or applications/xhtml+xml), and quoted attributes -- see https://www.w3schools.com/html/html_xhtml.asp for details. The WhatWG has a pretty good documentation page on the differences at https://wiki.whatwg.org/wiki/HTML_vs._XHTML. There are differences in scripting. Most of the differences are obvious extensions from XHTML being an XML document. The W3C HTML5 specification (https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml) is consistent with the above comments. All of the formalities aside, from my observations there is very little use of the XHTML document type for regular web pages.
 +
 +
=== Functions "like" HTML ===
 +
: All nodes shall be fully integrated with the DOM [This may need to change if certain nodes need to remain hidden from the DOM. For example, the manner which X3DOM implements Inline.]
 +
: The scene graph does not need to be DOM (or a portion of it).
 +
:: X3DOM keeps a separate scene graph from the DOM. The rendering occurs from the scene graph. Changes to the DOM cause changes to the scene graph and vice versa.
 +
: Changes to the DOM shall be reflected in the scene graph
 +
: Changes to the scene graph shall be reflected in the DOM
 +
:: Using the DOM to maintain and reflect state is often considered slow. Could this be optional ? Changes to the scene graph cause events which can be listened to if required. (This is why cobweb-dom does not reflect back interpolator output to the DOM at this point)
 +
:: Perhaps it is better to set all current fields that are initialized to be (generally) non-updated. If you want to see a particular value, you need to listen to the appropriate event. Certain events would cause the initialized fields to be updated. I know that this is not written well.
 +
: Events are handled as HTML events
 +
: DOM is the external (i.e., from the web page) API to the scene graph
 +
:: X3dom does it that way. One could add that this external API could be implemented using the SAI thereby guaranteeing X3D event flow determinism
 +
:: Would it be possible to implement the SAI over DOM? I am concerned about having more than one fundamental API. It will cause confusion and errors.
 +
 +
=== Other HTML related ===
 +
: X3D scenes can pass events to/from the DOM and ROUTE events within the scene graph.
 +
: HTML elements, SVG elements and css blocks can be interspersed with X3D elements.
 +
: HTML Script, SVG Script and X3D Script elements are unique and distinguishable.
 +
:: I still have not heard a good reason to have X3D scripts. They cannot have the same element name so legacy X3D files cannot run. At that point using HTML JavaScript for all processing appears to be the right thing to do. I see it as very important to content developers not to have multiple flavors of JavaScript running.
 +
: String-based DOM events correlate with strongly typed X3D events by defined correspondences
 +
:: Multiple candidate approaches can be listed and compared
 +
:: The events I am referring to are those that cross between X3D and HTML or any other non-X3D environment (e.g., display, orientation, etc.).
 +
 +
; X3D shall support the evolving web standards for flat-3D (WebGL), VR WebVR) and AR
  
 
===Scripting===
 
===Scripting===

Revision as of 02:45, 5 April 2017

Web3D Strategy

"Next-generation evolution + revolution is combined with archival compatibility of existing legacy content." Web3D Standards Strategy

Boundary conditions

  1. This is just for X3D running in a web browser and integrated with HTML. This could be expressed as <x3d> ... </x3d> can be treated as a document fragment in the body of an HTML document. If there is X3D outside of this limitation, these requirements may or may not apply.
  2. Changes to X3D Abstract Specification? I had not gone as far as indicating which changes needed to go where. Obviously new nodes would need to be in the Abstract specification. But even before going there it is necessary to determine what environments X3D will operate in. My limitations are only for a web browser environment. Environments beside that one are not a concern of the requirements I stated. If there are to be other environments than those differences and similarities would need to be worked out.
  3. Defining an HTML5 Encoding, and perhaps a corresponding HTML5 Profile

Notes

  1. Some of these requirements may overlap by varying amounts. It was easier to specify them this way then trying to make a complete and non-overlapping set. I'm not going to even claim that this is a complete set, but it is a beginning.
  2. For those that want XHTML, then convert all references to HTML to XHTML and make the appropriate syntax changes. The differences between HTML and XHTML in the appearance of the elements and attributes is that XHTML is strict. This amounts to closing elements, elements and attributes are lower case, mandatory elements and attributes, different MIME type (text/html vs. application/xml or applications/xhtml+xml), and quoted attributes -- see https://www.w3schools.com/html/html_xhtml.asp for details. The WhatWG has a pretty good documentation page on the differences at https://wiki.whatwg.org/wiki/HTML_vs._XHTML.
  3. Cross-check with the following pages:
    1. X3D V4 at http://www.web3d.org/x3d4
    2. X3D V4 development at http://www.web3d.org/wiki/index.php/X3D_version_4.0_Development

Candidate Requirements

Looks "like" HTML

Elements (nodes in X3D-speak) shall be case independent
Attributes (fields in X3D-speak) shall be case independent
X3D nodes shall not have name conflicts with any HTML-defined elements
I believe the HTML5 Custom Elements spec requires a prefix-name format for element names. While allowing lowercase should we also allow 'x3d-transform' format alternative names ?
In that case, each node would be aliased with a HTML5 Custom Element compatible name.
All X3D nodes shall support all HTML Global Attributes [1]
Is this equivalent to requiring that X3D nodes need to derive from HTMLElement as defined in the DOM ?
All X3D fields with the same name as HTML attributes shall behave as the HTML element
TBD: Not all style attributes apply to X3D nodes & fields

HTML encodings

HTML5 has two encodings, not one. Each consistently maps to DOM. The WG developing corresponding functionality and syntax that supports both encodings will add tremendous value to everyone.
HTML5 Recommendation section 8. The HTML syntax https://www.w3.org/TR/html5/syntax.html#syntax
HTML5 Recommendation section 9. The XHTML syntax https://www.w3.org/TR/html5/the-xhtml-syntax.html#the-xhtml-syntax
The differences between HTML and XHTML in the appearance of the elements and attributes is that XHTML is strict. This amounts to closing elements, elements and attributes are lower case, mandatory elements and attributes, different MIME type (text/html vs. application/xml or applications/xhtml+xml), and quoted attributes -- see https://www.w3schools.com/html/html_xhtml.asp for details. The WhatWG has a pretty good documentation page on the differences at https://wiki.whatwg.org/wiki/HTML_vs._XHTML. There are differences in scripting. Most of the differences are obvious extensions from XHTML being an XML document. The W3C HTML5 specification (https://www.w3.org/TR/html5/introduction.html#html-vs-xhtml) is consistent with the above comments. All of the formalities aside, from my observations there is very little use of the XHTML document type for regular web pages.

Functions "like" HTML

All nodes shall be fully integrated with the DOM [This may need to change if certain nodes need to remain hidden from the DOM. For example, the manner which X3DOM implements Inline.]
The scene graph does not need to be DOM (or a portion of it).
X3DOM keeps a separate scene graph from the DOM. The rendering occurs from the scene graph. Changes to the DOM cause changes to the scene graph and vice versa.
Changes to the DOM shall be reflected in the scene graph
Changes to the scene graph shall be reflected in the DOM
Using the DOM to maintain and reflect state is often considered slow. Could this be optional ? Changes to the scene graph cause events which can be listened to if required. (This is why cobweb-dom does not reflect back interpolator output to the DOM at this point)
Perhaps it is better to set all current fields that are initialized to be (generally) non-updated. If you want to see a particular value, you need to listen to the appropriate event. Certain events would cause the initialized fields to be updated. I know that this is not written well.
Events are handled as HTML events
DOM is the external (i.e., from the web page) API to the scene graph
X3dom does it that way. One could add that this external API could be implemented using the SAI thereby guaranteeing X3D event flow determinism
Would it be possible to implement the SAI over DOM? I am concerned about having more than one fundamental API. It will cause confusion and errors.

Other HTML related

X3D scenes can pass events to/from the DOM and ROUTE events within the scene graph.
HTML elements, SVG elements and css blocks can be interspersed with X3D elements.
HTML Script, SVG Script and X3D Script elements are unique and distinguishable.
I still have not heard a good reason to have X3D scripts. They cannot have the same element name so legacy X3D files cannot run. At that point using HTML JavaScript for all processing appears to be the right thing to do. I see it as very important to content developers not to have multiple flavors of JavaScript running.
String-based DOM events correlate with strongly typed X3D events by defined correspondences
Multiple candidate approaches can be listed and compared
The events I am referring to are those that cross between X3D and HTML or any other non-X3D environment (e.g., display, orientation, etc.).
X3D shall support the evolving web standards for flat-3D (WebGL), VR WebVR) and AR

Scripting

For example, SVG also has a script node that seems to operate just fine in combination with HTML.

  • See [2]
  • See the example in 18.2 The 'script' element at [3]
  • See the DOM interface definition for SVGScriptElement at [4]